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Abstract

We analyze the role of competition in information provision in random search

markets. Multiple symmetric senders compete for the receiver’s investment by

disclosing information about their respective project qualities, and the receiver

conducts random search to learn about the qualities of the projects. We show that

in any symmetric pure strategy Nash equilibrium, each sender chooses a strategy

with the lowest possible reservation value. There is no active search, and the

receiver does not benefit from the competition of the senders.
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1 Introduction

We consider a model of competitive information disclosure in random search markets.

Multiple symmetric senders, each of whom is endowed with a project, compete for the

investment of a single receiver by disclosing information about their respective project

qualities. The number of senders is small, and the receiver is assumed to observe the

strategies of the senders. We study a search model where search is costly and the search

process is assumed to be random.

Several motivations can be offered for considering this model:1

- First, even if the receiver is assumed to observe the chosen strategies of the senders,

in many realistic settings, the receiver might have only limited ability to conduct

directed search. For example, this could be due to the scheduling concerns on

the part of the senders, which limits the extent to which the receiver performs a

directed search.

- Second, an equivalent interpretation of our model is that the senders’ strategies

are not individually observable (which makes directed search impossible for the

receiver), but the receiver has access to some “aggregate-level data” about the

distribution of signals in the market, which guides the receiver’s decision of whether

to continue search. This is the case if the search process is via an intermediary

that typically provides aggregate-level information of the competitive products in

a given market.

- Third, we motivate our analysis from the following theoretical perspective. Most

models assume either a random search process where the receiver does not observe

each individual sender’s strategy or a directed search process where the receiver

perfectly observes each individual sender’s strategy. The modeling choice makes a

huge difference in terms of the results. For example, the main model in Au and

Whitmeyer (2022) study the latter case and shows that the receiver potentially

benefits from the competition of the senders, and the hidden information setting

in Au and Whitmeyer (2022, Section 5.2) studies the former case and shows that

there is no symmetric equilibrium in which consumers engage in active search.

1We are grateful to an anonymous referee for suggesting the second and third motivations below.
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The search setting of our model sits between the two polar cases explored in Au

and Whitmeyer (2022) as we maintain the observability of each individual sender’s

strategy while restricting the receiver’s ability to conduct directed search. Our

finding highlights that it is the ability to conduct directed search, not simply the

public observability of the signals, that drives a competitive market outcome.

Formally, we consider a model in which n symmetric senders commit to information

disclosure mechanisms. The quality of each sender’s project is either high or low. The

common prior is that the qualities are independently and identically distributed. The

receiver conducts random search, and incurs a search cost/ inspection cost to learn about

the qualities of the senders’ projects. Theorem 1 shows that in any symmetric equilibrium

of this game, each sender chooses a strategy with the lowest possible reservation value.

The receiver meets each sender i with equal probability 1
n
, and invests in his project

regardless of the posterior. There is no active search, and the receiver does not benefit

from the competition of the senders, as the receiver’s expected payoff does not change

when the number of senders increases.

We show that our result persists under various extensions to our basic model, when we

incorporate a role for outside option, when each sender’s project quality follows a general

distribution, and when the senders are asymmetric. In all these extensions, we show that

there is no active search, and the receiver does not benefit from the competition of the

senders.

While our result is reminiscent of the classical Diamond paradox (Diamond (1971)),

we emphasize that our model is different. Although our receiver conducts a random

search, the receiver in our model perfectly observes each individual sender’s strategy,

including any deviations from the equilibrium (see Section 4.4 for a fuller discussion on

this).

Our paper contributes to the strand of the information design literature that studies

competitive information disclosure (with or without search frictions). Boleslavsky and

Cotton (2018), Au and Kawai (2020), Au and Kawai (2021), and Hwang et al. (2019)

analyze competitive information disclosure in settings with no search cost. Boleslavsky

and Cotton (2018) analyze a Bayesian-persuasion game with two senders, using the
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observation that the incentive structure faced by a sender is similar to that of a bidder in

an all-pay auction with complete information. Au and Kawai (2020) adopt an approach

that builds upon the linear structure of payoff functions, which allows them to tackle the

more general setting with multiple senders and study the effect of the number of senders

on equilibrium disclosure policies.2 They establish the unique symmetric equilibrium

in this game. As the number of senders increases, each sender disclosures information

more aggressively, and full disclosure by each sender arises in the limit of infinitely many

senders. Au and Kawai (2021) study a model of competition in which two senders vie

for the patronage of a receiver by disclosing information about the qualities of their

respective proposals, which are positively correlated. Hwang et al. (2019) solve the

competitive persuasion problem when the prior is absolutely continuous and allow firms

to set prices as well. In contrast to these papers, we model a random search market with

search frictions and show that the receiver does not benefit from the competition of the

senders.

Au and Whitmeyer (2022) study competitive information disclosure by multiple

senders with search frictions. In their model, the receiver conducts a directed search,

and the main focus is the attraction motive. They characterize the unique symmetric

equilibrium—the receiver potentially benefits from the competition of the senders. They

further consider the case of hidden signals—the firms’ signals are not directly observable

to the consumer at the outset of her search—and show that the consumer does not find

it worthwhile to actively search. In settings in which the senders choose the information

disclosure and also set a price, Whitmeyer (2021) shows that there is no symmetric

equilibria in which consumers engage in active search, if neither the signal nor the price

is observable until a consumer incurs the search cost.

Board and Lu (2018) consider a search setting in which a receiver, at a positive

search cost, sequentially samples senders who provide information concerning a common

state. In contrast, in our setting, the senders have independent proposals, and they make

disclosures simultaneously.

2Spiegler (2006) studies a closely related problem, although the motivation comes from the bounded
rationality of the consumer.
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2 The basic model

We start with the basic version of the model. The model here is kept simple, at some

costs of realism, which will be addressed later.

There are n senders, each of whom is endowed with a project. They compete for the

investment of a single receiver. The quality of sender i’s project, denoted θi, is either

high (H) or low (L), and is independently and identically distributed across the senders.

The common prior is that each sender’s project is of high quality with probability p.

Each sender’s objective is to maximize the probability that the receiver invests in his

project. Without loss of generality, we normalize each sender’s payoff to be 1 if the

receiver invests in his project, and 0 otherwise. The receiver’s valuation for a project is

1 if its quality is H, and 0 if its quality is L. The receiver invests in at most one project.

In the baseline model, the receiver does not have an outside option, and the receiver

always invests.

The timing of the game is as follows.

(1) At the beginning of the game, each sender i simultaneously commits to an

information disclosure mechanism on the quality of his project, which consists

of a message space Mi and a joint distribution on {H,L} ×Mi. It follows from

standard Bayesian persuasion arguments (see Kamenica and Gentzkow (2011)) that

each sender i chooses a distribution Fi on [0, 1] with mean p. Let F denote the

collection of all such distributions. The chosen information disclosure mechanisms

are publicly posted.

(2) The receiver learns about the qualities of the senders’ projects through random

search. At each stage of the search, the receiver can stop her search and invest

in a project of any visited sender. Alternatively, she can incur a search cost of c,

visit an unvisited sender, and observe the signal realization. To avoid triviality, we

assume that c < p.

We focus on symmetric pure strategy Nash equilibria in which all senders adopt

the same strategy and the receiver adopts a tie-breaking rule that treats all senders

identically.
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3 Equilibrium analysis

3.1 Basics

For any F ∈ F , let

HF (z) = −c+

∫ z−

0

z dF (x) +

∫ 1

z

x dF (x).3

A solution to the equation HF (z) = z exists and is unique (see Weitzman (1979)). We

denote the solution to this equation by vF , and refer to it as the reservation value of F .

It is convenient to use the following rearrangement of the equation HF (vF ) = vF :

c =

∫ 1

vF

(x− vF ) dF (x).

The reservation value plays an important role in our analysis. In particular, adopting

similar arguments as in Weitzman (1979) to our setting, we have that for any strategy

profile of the senders,

(1) the receiver should continue her search if every unvisited sender uses a strategy

that has a weakly higher reservation value than the maximum sampled reward and

at least one unvisited sender uses a strategy that has a strictly higher reservation

value than the maximum sampled reward, and

(2) the receiver should stop search if every unvisited sender uses a strategy that has a

weakly lower reservation value than the maximum sampled reward.

Let FF denote the full disclosure strategy, that is,

FF (x) =

1− p, if x ∈ [0, 1);

1, if x = 1.

3Notation: we use
∫ b

a
to denote the integral over the interval [a, b],

∫ b−
a

to denote the integral over

the interval [a, b), and
∫ b

a+
to denote the integral over the interval (a, b]. We use F (x) to denote the

measure on the interval [0, x], F (x−) to denote the measure on the interval [0, x), and F ({x}) to denote
the measure of the point x.
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Let FN denote the null disclosure strategy, that is,

FN(x) =

0, if x ∈ [0, p);

1, if x ∈ [p, 1].

It is straightforward to calculate that vFF = 1 − c
p

and vFN = p − c. Below we collect

some well-known properties of the reservation value, which will be used throughout our

equilibrium analysis.

1. For any F ∈ F , 0 < p− c ≤ vF ≤ 1− c
p
< 1.

2. vF = p− c if and only if F (vF−) = 0.

3. vF = 1− c
p

if and only if F = FF .

As a benchmark, first consider the case of a single sender. Since the receiver does not

have an outside option, regardless of the sender’s strategy, the receiver incurs the search

cost c to meet the sender, and invests in his project. The receiver’s expected payoff is

p− c.

3.2 Equilibrium analysis

Theorem 1 shows that in any symmetric pure strategy Nash equilibrium (if it exists),

each sender chooses a strategy with the lowest possible reservation value. Clearly, in any

symmetric equilibrium, all senders get the same expected payoff of 1
n
.

Theorem 1. Suppose that F ∈ F . If (F, F, . . . , F ) is a symmetric pure strategy Nash

equilibrium, then

vF = p− c.

By Theorem 1, in any symmetric pure strategy Nash equilibrium (F, F, . . . , F ), the

receiver meets each sender i with equal probability 1
n
, and invests in his project regardless

of the posterior qi (since vF = p − c, F (vF−) = 0). The receiver’s expected payoff is

p − c, the same as her payoff when there is a single sender. In other words, there is no

active search, and the receiver does not benefit from the competition of the senders.
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Here, we provide a sketch of the proof for Theorem 1; the detailed proof can be found

in Appendix B. Suppose that there exists a symmetric pure strategy Nash equilibrium

(F, F, . . . , F ) such that vF > p − c. Step 1 - Step 4 first establish some properties that

F necessarily satisfies:

Step 1. F (vF−) 6= 0 (since vF > p− c).

Step 2. F has no jumps on (0, vF ).

Step 3. F (0) = 0.

Step 4. F n−1 is flat on [xF , vF ) for some 0 < xF < vF .4

Step 1 is straightforward. For each of Steps 2 - 4, we include a figure depicting the payoff

function induced by a violation of any of these steps for the case of two senders: Figure

1 illustrates that if F has a jump at some z ∈ (0, vF ), then a sender could improve his

payoff using a mean preserving spread around z; Figure 2 illustrates that if F (0) > 0,

then a sender could improve his payoff using a mean preserving contraction around 0;

Figure 3 illustrates that if F is linear on [0, vF ), then a sender could improve his payoff

using a mean preserving contraction around vF . For Step 4, intuitively, F must put no

measure just under vF , because the search cost induces a discrete jump in the payoff

function (as a function of the posterior) at the posterior vF .

For any F that satisfies these properties, in Step 5, we show that sender 1 could

deviate to another strategy F ′ with a slightly lower reservation value than vF and places

a larger measure on the interval [vF , 1] than F does. Such a deviation has two effects. On

the one hand, if the receiver visits the other senders before sender 1, there is a smaller

probability of eventually visiting sender 1 (since vF ′ < vF ). On the other hand, if the

receiver visits sender 1 and has a posterior on [vF , 1] (which has a higher probability

under F ′), then she will stop search. Since F must put no measure just under vF (as

shown in Step 4), we can construct an F ′ such that the second effect dominates the first

one.

4The arguments for these steps parallel those in Au and Kawai (2020). In the setting with no search
costs, they show that a strategy profile is an equilibrium if and only if the induced payoff functions
(of posterior distributions) exhibit a particular linear structure, and they then use this structure to pin
down the unique symmetric equilibrium. The detailed arguments differ from theirs as we consider search
costs. For completeness, we include the detailed arguments for the first four steps.
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0 x
z vF 1

1

F (x)

0 x
z vF 1

1

payoff function

Figure 1: The figure on the left depicts an F that has a jump at some z ∈ (0, vF ), and the
figure on the right depicts the payoff function of sender 1. (for the case of two senders,
for illustration purposes only).

0 x
vF 1

1

F (x)

0 x
vF 1

1

payoff function

Figure 2: The figure on the left depicts an F with F (0) = 0, and the figure on the
right depicts the payoff function of sender 1 (for the case of two senders, for illustration
purposes only).

0 x
vF 1

1

F (x)

0 x
vF 1

1

payoff function

Figure 3: The figure on the left depicts an F that is linear on [0, vF ), and the figure
on the right depicts the payoff function of sender 1 (for the case of two senders, for
illustration purposes only).
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Theorem 1 shows that in any symmetric pure strategy Nash equilibrium (F, F, . . . , F )

(if it exists), it must be that vF = p − c. Having said that, we note that such an

equilibrium might not exist. Proposition 1 below provides some necessary conditions

and also some sufficient conditions for the existence of such an equilibrium. To pin down

further necessary conditions, our analysis involves the search behavior of the receiver

when one of the senders deviates to the following distribution

Fy(x) =


1− c

1−y −
1
y
(p− c

1−y ) if x ∈ [0, y);

1− c
1−y if x ∈ [y, 1);

1 if x = 1.

for some y ∈ [p− c, 1− c
p
] while the other senders continue to use F (with vF = p− c).

Suppose that there are k − 1 unvisited senders (k ≤ n), where one of the senders uses

Fy and the other k − 2 senders use F (with vF = p− c). We show in Appendix A that

there exists a cutoff ψk(Fy) (ψk(y) in short) such that the receiver continues her search

if and only if the maximum sampled reward is less than ψk(y).

Proposition 1. Suppose that F ∈ F and vF = p− c.

(1) If (F, F, . . . , F ) is a symmetric equilibrium, then

1 +
n−1∑
k=1

Π1≤j≤kF (ψn−j+1(x)) ≤ x

p− c

for all x ∈ [p− c, 1− c
p
).

(2) If F satisfies the following:

1 +
n−1∑
k=1

F k(x) ≤ x

p− c

for all x ∈ [p− c, 1− c
p
), then (F, F, . . . , F ) is a symmetric equilibrium.5

5When there are two senders, by working with the particular deviation strategy Fy(x), we can show
that the necessary conditions and sufficient conditions coincide (as ψ2(x) = x). We proceed to work
with this particular deviation strategy Fy(x) in the case of more than two senders, but generally there
is a gap.
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The conditions in Proposition 1 provide some understanding of when a symmetric

pure strategy Nash equilibrium does not exist.6 Plainly, there are two sets of requirements

on F , because F has to satisfy the conditions in Proposition 1 (which implies a lower

bound on the mean) and also needs to be a feasible strategy (with mean p). Sometimes,

such an F does not exist. For example, consider the setting with two senders and suppose

that p ≤ 0.5.7 For (F, F, . . . , F ) to be an equilibrium, we need

F (x) ≤ x

p− c
− 1

for all x ∈ [p− c, 1− c
p
). But the mean of any such F is at least

∫ 2(p−c)

p−c
x d(

x

p− c
− 1) =

3

2
(p− c).

Thus, for equilibrium existence, we would have to have that 3
2
(p−c) ≤ p, or equivalently,

p ≤ 3c. If p > 3c, then a symmetric pure strategy Nash equilibrium does not exist. We

provide a discussion for the case of n senders in Appendix C.

It is also clear from Proposition 1 that the conditions are more stringent and hence

the lower bound of the mean of any distribution that satisfies these conditions gets larger

when there are more senders.

Remark 1. (The degenerate distribution on the prior) The degenerate distribution on

the prior p, even though it induces the minimal reservation value, is not necessarily an

equilibrium. For a simple example, suppose that there are two senders, p = 0.5, and

c = 0.2. The degenerate distribution on the prior induces the reservation value of 0.3. If

both senders use the null information disclosure policy, then each sender gets an expected

payoff of 1
2
. Now suppose sender 1 chooses the strategy that puts probability 11

26
on {0},

probability 25
156

on {0.52}, and probability 5
12

on {1}. It is straightforward to calculate

that the reservation value of this distribution is 0.52 and sender 1’s payoff following this

6It is clear from Proposition 1 that the conditions are more demanding when there are more senders.
We conjecture that given any parameter (p, c), there is a cutoff n such that when n ≤ n, a symmetric
pure strategy Nash equilibrium exists in which there is no active search; when n > n, only mixed strategy
Nash equilibria exist in which there is active search and benefit of increased competition, paralleling the
results in Au and Whitmeyer (2022).

7The calculation of the lower bound of the mean would be different if p > 0.5.
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deviation is 15
26

. Hence, the new strategy is a profitable deviation for sender 1.

It is also easy to see that the degenerate distribution on the prior p violates the

following necessary condition in Proposition 1:

1 + F (x) ≤ x

p− c

for all x ∈ [p− c, 1− c
p
). For example, for the degenerate distribution on the prior p, for

x = 0.5, 1 + F (0.5) = 2 > 0.5
0.5−0.2 = 5

3
.8

4 Extensions

Theorem 1 shows that, in our basic model, there is no active search and the receiver

does not benefit from the competition of the senders. In this section, we study various

extensions to our basic model and show that our main result persists. Section 4.1

incorporates the role of an outside option. Section 4.2 considers the case of a general

distribution. Section 4.3 analyzes the case of asymmetric senders. Lastly, in Section 4.4,

we compare our model with the Diamond paradox.

4.1 Outside option

Our analysis can be readily extended to the case in which the receiver has an outside

option u0. Clearly,

(1) if u0 < p− c, then our analysis in Section 3 remains unchanged; and

(2) if u0 > 1− c
p
, then the receiver will not search at all.

In what follows, we consider the case in which u0 ∈ [p− c, 1− c
p
].

Suppose that there is only one sender. As in the Bayesian persuasion literature, we

break ties in favor of the sender; that is, the receiver continues search if the reservation

value of the sender’s strategy equals u0, and invests in the sender’s project if the realized

8Also by Proposition 1, we can easily verify that the following is a Nash equilibrium: each sender
uses the strategy that puts probability 1

3 on 0.4, probability 1
3 on 0.5, and probability 1

3 on 0.6.
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posterior is u0. Without loss of generality, the sender uses a strategy with a reservation

value that is at least u0. It is easy to verify that, if the sender uses a strategy with a

reservation value v ≥ u0, then the highest payoff of the sender is

c

1− v
+
p− c

1−v

u0
,

which is decreasing in v, by using a strategy that places probability c
1−v on 1,

p− c
1−v
u0

on

u0, and the remaining probability on 0. Thus, the sender would choose a strategy with

the reservation value u0. The receiver incurs the search cost c to meet the sender, and

invests in his project if and only if the realized posterior is weakly higher than u0. The

receiver’s expected payoff is u0.

Now suppose that there are n ≥ 2 senders. Using similar arguments as in the proof

of Theorem 1, we can show that in any symmetric equilibrium (F, F, . . . , F ), vF = u0.

Thus, the receiver’s expected payoff is u0, the same as her payoff when there is a single

sender. The receiver does not benefit from the competition of the senders.

4.2 General distribution

In the basic model, we assume that the quality of each sender’s project takes only two

values, high or low. Here, we consider the case in which the quality of each sender’s

project is drawn according to an atomless distribution function H with mean p and

supp(H) = [0, 1] independently and identically across the senders. The receiver’s payoff

is θ if the receiver invests in a project with quality θ.

Following standard Bayesian persuasion arguments (see Kamenica and Gentzkow

(2011)), each sender i chooses a distribution Fi that is a mean-preserving contraction

(MPC) of H. Let F denote the collection of all such distributions. For any F ∈ F , let

vF be such that

c =

∫ 1

vF

(x− vF ) dF (x).

Clearly, p− c ≤ vF ≤ vH .
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Theorem 2. Suppose that F ∈ F . If (F, F, . . . , F ) is a symmetric equilibrium, then

vF = p− c.

By Theorem 2, in any symmetric equilibrium (F, F, . . . , F ), the receiver meets each

sender i with equal probability 1
n
, and invests in his project regardless of the posterior

qi (since vF = p− c, we have F (vF−) = 0.). There is no active search, and the receiver

does not benefit from the competition of the senders.

4.3 Asymmetric senders

So far, our analysis focuses on the case of symmetric senders, and we show that there is

no active search and the receiver does not benefit from the competition of the senders.

The readers might wonder whether this still holds if the senders are asymmetric. In

this section, we study the Nash equilibrium in a settings with two asymmetric senders.9

There are two senders i = 1, 2. The quality of each sender i’s project, θi, is either H or L.

Sender 1’s project is H with probability p1, and sender 2’s project is H with probability

p2. The receiver’s valuation for a project is 1 if its quality is H, and 0 if its quality is L.

Without loss of generality, we assume that p1 > p2.

To assess whether the receiver would benefit from the competition of the two senders,

we would have to first establish a benchmark of the receiver’s expected payoff in the case

of a single sender. A natural benchmark to use is p1+p2
2
− c. Intuitively, this is the

receiver’s expected payoff when there is a single sender, who is drawn from the two

senders with equal probability.

Theorem 3. (1) If (F1, F2) is a Nash equilibrium, then

(a) vF2 = p2 − c,

(b) Fi concentrates on [vFj , 1] with i 6= j, and

(c) 1 + F2(x) ≤ x
p1−c for all x ∈ [p1 − c, 1− c

p1
),

2F1(x) ≤ x
p2−c for all x ∈ [p2 − c, vF1), and

9The analysis of asymmetric senders for competitive information disclosure settings is in general a
daunting question. For tractability, we focus on the case of two asymmetric senders.
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1 + F1(x) ≤ x
p2−c for all x ∈ [vF1 , 1− c

p2
).

(2) If (F1, F2) satisfies the following:

(a) vF2 = p2 − c,

(b) Fi concentrates on [vFj , 1] with i 6= j, and

(c) 1 + F2(x) ≤ x
p1−c for all x ∈ [p1 − c, 1− c

p1
), and

1 + F1(x) ≤ x
p2−c for all x ∈ [p2 − c, 1− c

p2
),

then (F1, F2) is a Nash equilibrium.

By Theorem 3, in any equilibrium (F1, F2), F1 places no probability on the interval

[0, vF2), and vice versa. Thus, the receiver meets each sender i with equal probability 1
2
,

and invests in his project regardless of the posterior qi. The payoff of each sender is 1
2
,

and the receiver’s expected payoff is p1+p2
2
−c. There is no active search, and the receiver

does not benefit from the competition of the senders.

Remark 2. (Equilibrium existence) As in the case of multiple symmetric senders, a pure

strategy Nash equilibrium might not exist. Theorem 3 provides necessary conditions and

also sufficient conditions for the existence of such an equilibrium. For example, Theorem

3 says that for (F1, F2) to be a Nash equilibrium, it must be that F2 concentrates on

[vF1 , 1]. This cannot hold if, say, p1 − c > p2. In other words, the existence of the

pure strategy equilibrium crucially relies on the perturbation from homogeneity being

sufficiently mild.

4.4 Discussion and comparison with the Diamond paradox

In this subsection, we study a direct analogy of our model in the more familiar setting

in which two firms compete by choosing prices. We show that in this setting, when

the consumer perfectly observes each firm’s price, including any deviation from the

equilibrium (in line with the random search model considered in this paper), the

monopoly outcome may not be an equilibrium.10 This exercise highlights that our model

is different from the Diamond paradox.

10We are grateful to the referees for suggesting this discussion.
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Consider a simple setting with two firms, each selling a product that yield value 1 to

the consumer, who has an outside option of value 0. The marginal cost of production

for both firms is 0. The search cost is c ∈ (0, 1
2
), which is (following the literature) only

incurred if the consumer visits the second firm (so visiting the first firm is free). The

Diamond paradox result says that the unique equilibrium is for the firms to obtain the

monopoly outcome: both charge a price of 1 and extract all of the surplus.

Now suppose that the prices posted by the firms are publicly observable, but the

consumer can only conduct a random search. It is easy to see that the monopoly outcome

is not an equilibrium. Indeed, suppose that the monopoly outcome is an equilibrium.

On the equilibrium path, both firms get an expected payoff of 1
2
. Firm 1 could deviate

to charging the price of p1 = 1− c− ε for some sufficiently small ε > 0. As ε→ 0, firm

1’s expected payoff following the deviation converges to 1− c > 1
2
. This contradicts that

the monopoly outcome is an equilibrium.
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A Search behavior of the receiver

In this section, we study the optimal search behavior of the receiver in the following

scenario: there are k − 1 unvisited senders (k ≤ n), where one of the senders uses the

following distribution

Fy(x) =


1− c

1−y −
1
y
(p− c

1−y ) if x ∈ [0, y);

1− c
1−y if x ∈ [y, 1);

1 if x = 1.

for some y ∈ [p− c, 1− c
p
] while the other senders continue use the same strategy F with

vF = p − c.11 Let x denote the maximum sample reward (where x ≥ p − c). In this

section, we pin down the search behavior of the receiver in this scenario. In particular,

we show that there exists a cutoff ψk(y) such that the receiver continues her search if

and only if the maximum sampled reward is less than ψk(y).

11It is straightforward to verify that vFy
= y.
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It follows from Weitzman (1979) that the receiver should stop search if the maximum

sampled reward x is weakly higher than the reservation value of vFy . In what follows,

we assume that x < vFy .

We proceed by induction. Suppose that k = 2. That is, there is only one unvisited

sender, and this sender uses Fy. Let

V2(x|Fy) =

[
1− c

1− y
− 1

y
(p− c

1− y
)

]
x+

[
c

1− y
+

1

y
(p− c

1− y
)

]
y − c

= (1− p− c
y

)x+ p− c

denote the receiver’s expected payoff conditional on continuing search and let

W2(x|Fy) = max{x, V2(x|Fy)}

denote the receiver’s maximum expected payoff when the receiver optimizes her search

decision. That is, the receiver compares the value of x and V2(x|Fy) when deciding

whether to continue search. Let ψ2(Fy) = y. Since V2(ψ2(Fy)|Fy) = ψ2(Fy), ψ2(Fy) = y

is the level of the maximum sampled reward such that the receiver is indifferent.

For k = 3, 4, . . . , n, we define Vk(x|Fy), Wk(x|Fy), and ψk(x) inductively. Let

Vk(x|Fy) =
1

k − 1

[
(1− p− c

y
)x+ p

]
+
k − 2

k − 1

∫ 1

p−c
Wk−1(max{x, z}|Fy) dF (z)− c

denote the receiver’s expected payoff conditional on continuing search,12 and let

Wk(x|Fy) = max{x, Vk(x|Fy)}

denote the receiver’s maximum expected payoff when the receiver optimizes her search

decision. That is, the receiver compares the value of x and Vk(x|Fy) when deciding

12There are two cases to consider. (1) The receiver visits the sender who uses F ′ with 1
k−1 probability.

Then the receiver stops search and gets a payoff of x if the posterior of Fy is 0 (recall that x ≥ p−c = vF ),
and the receiver stops search and gets a payoff of y (resp. 1) if the posterior of Fy is y (resp. 1) (recall
that y ≥ p− c = vF ). (2) With the remaining probability, the receiver visits one of the senders who use
F .
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whether to continue search. Let ψk(Fy) be such that

ψk(Fy) =
1

k − 1

[
(1− p− c

y
)ψk(Fy) + p

]
+
k − 2

k − 1

∫ 1

p−c
Wk−1(max{ψk(Fy), z}|Fy) dF (z)− c.

Clearly, Vk(ψk(Fy)|Fy) = ψk(Fy), and ψk(Fy) is the level of the maximum sampled reward

such that the receiver is indifferent. Lemma 1 below shows that Vk(x|Fy) is continuous

in x, and such a fixed point ψk(Fy) exists and is unique.

Lemma 1. (1) Vk(x|Fy) is continuous in x, and a fixed point exists for Vk(x|Fy).

(2) Vk(x|Fy)− x is strictly decreasing in x.

(3) There exists a unique ψk(Fy) such that Vk(ψk(Fy)|Fy) = ψk(Fy).

Proof. (3) follows immediately from (2). In what follows, we adopt an induction

argument to show that (1) and (2) hold for any k ≤ n. Recall that V2(x|Fy) =

(1− p−c
y

)x+ p− c. Thus, (1) and (2) are clearly true when k = 2.

Suppose that (1) and (2) are true for some k = k′. We process to show that (1) and

(2) hold for k = k′ + 1. Since Vk′(x|Fy) is continuous in x, we have Wk′(x|Fy) is also

continuous in x, which further implies that Vk′+1(x|Fy) is continuous in x. It is easy to

calculate that

Vk′+1(p− c|Fy) =
1

k′

[
(1− p− c

y
)(p− c) + p

]
+
k′ − 1

k′

∫ 1

p−c
Wk′(max{p− c, z}|Fy) dF (z)− c

>
1

k′
· p+

k′ − 1

k′

∫ 1

p−c
z dF (z)− c

=p− c

and

Vk′+1(1|Fy) =
1

k′

[
(1− p− c

y
) · 1 + p

]
+
k′ − 1

k′

∫ 1

p−c
Wk′(max{1, z}|Fy) dF (z)− c

≤ 1

k′
· 1 +

k′ − 1

k′

∫ 1

p−c
1 dF (z)− c

=1− c
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<1.

Thus, there exists some x∗ ∈ (p − c, 1) such that Vk+1(x
∗|Fy) = x∗. This proves (1) for

k = k′ + 1.

For x′ > x, we have

Vk′+1(x
′|Fy)− Vk′+1(x|Fy)

=
1

k′
(1− p− c

y
)(x′ − x) +

k′ − 1

k′

[∫ 1

p−c
Wk′(max{x′, z}|Fy) dF (z)−

∫ 1

p−c
Wk′(max{x, z}|Fy) dF (z)

]
<

1

k′
(x′ − x) +

k′ − 1

k′

[
(Wk′(x

′|Fy)−Wk′(x|Fy))F (x) +

∫ x′

x

(Wk′(x
′|Fy)−Wk′(z|Fy)) dF (z)

]

≤ 1

k′
(x′ − x) +

k′ − 1

k′
(x′ − x)F (x′)

≤x′ − x,

where the second inequality holds since for any z ∈ [x, x′],

Wk′(x
′|Fy)−Wk′(z|Fy) = max{x′, Vk′(x′|Fy)} −max{z, Vk′(z|Fy)} ≤ x′ − z ≤ x′ − x.

This proves (3) for k′ = k + 1.

B Proofs of Theorem 1 and Proposition 1

We first consider the case in which vF > p − c, and show that there is no symmetric

pure strategy Nash equilibrium in this case (Theorem 1).13 We then consider the case

in which vF = p− c (Proposition 1).

Case I: p − c < vF ≤ 1 − c
p
. Step 1 - Step 4 below establish properties that

F necessarily satisfies. Step 5 shows that sender 1 has a profitable deviation, which

13In the case of two senders, since the two senders play a zero-sum game, this further implies that there
is no (symmetric or asymmetric) equilibrium in which the reservation value of some sender’s strategy is
greater than p− c. To see this, suppose that (F1, F2) is a Nash equilibrium where vFi

> p− c for some i.
By symmetry, (F2, F1) is also a Nash equilibrium. The inter-changeability property of zero-sum games
(see Osborne and Rubinstein (1994, Proposition 22.2)) implies that (Fi, Fi) is a Nash equilibria.
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contradicts that (F, F, . . . , F ) is a Nash equilibrium.

Step 1. Since vF > p− c, F (vF−) 6= 0.

Step 2. F has no jumps on (0, vF ).

Suppose to the contrary, F has a jump at some z ∈ (0, vF ). We show that there

exists a profitable deviation for sender 1, which contradicts that (F, F, . . . , F ) is a Nash

equilibrium.

Let G = G1 +G2 where

1. G1 is a finite measure with total measure 1− F ({z}) such that G1(A) = F (A) for

any A ⊆ [0, z) ∪ (z, 1], and

2. G2 is a finite measure with total measure F ({z}) such that

G2({z − nε}) =
1

n+ 1
F ({z}) and G2({z + ε}) =

n

n+ 1
F ({z}),

where ε > 0 is sufficiently small such that 0 < z − nε < z < z + ε < vF .

Clearly, G is a probability measure, and has the same mean and reservation value as F .

The difference of sender 1’s expected payoff under G and F is at least (in the first

line below we break ties against sender 1 for the calculation of sender 1’s payoff at the

two posteriors z − nε and z + ε)

1

n+ 1
F ({z})F n−1((z − nε)−) +

n

n+ 1
F ({z})F n−1((z + ε)−)

− F ({z})
∑

0≤j≤n−1

[
1

j + 1

(n− 1)!

j!(n− j − 1)!
F n−j−1(z−)F j({z})

]
,

which converges to

F ({z})
[ 1

n+ 1
F n−1(z−) +

n

n+ 1
F n−1(z)− 1

n

F n(z)− F n(z−)

F (z)− F (z−)

]
= F ({z})

[ 1

n+ 1
F n−1(z−) +

n

n+ 1
F n−1(z)− 1

n

∑
0≤j≤n−1

F n−j−1(z)F j(z−)
]

≥ 1

n(n+ 1)
F ({z})

[
F n−1(z)− F n−1(z−)

]
> 0
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F̂ (x)

Figure 4: F and F̂ in Step 3 of the proof (for illustration purposes only).

as ε→ 0.

Step 3. F (0) = 0.

Suppose to the contrary, F (0) > 0. We show that there exists a profitable deviation

for sender 1. For sufficiently small ε > 0, let χ and ε′ be such that

χ = F (0) +
c

1− vF
− c

1− ε− vF
and χ · ε′ + c

1− ε− vF
(1−

√
ε) =

c

1− vF
.

Since ε′ → 0 as ε → 0, we can choose ε such that 0 < χ < F (0) and 0 < ε′ < vF <

1−
√
ε < 1. Consider the following distribution F̂ (see Figure 4):

F̂ (x) =



F (x)− F (0), if x ∈ [0, ε′);

F (x)− F (0) + χ, if x ∈ [ε′, vF );

1− c
1−vF

− F (0) + χ = 1− c
1−ε−vF

, if x ∈ [vF , 1−
√
ε);

1, if x ∈ [1−
√
ε, 1].
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F̂ and F have the same mean, since

∫ 1

0

x dF̂ (x)−
∫ 1

0

x dF (x)

= χ · ε′ +
(
1− c

1− vF
− F (vF−)

)
· vF +

c

1− ε− vF
· (1−

√
ε)−

∫ 1

vF

x dF (x)

=
c

1− vF
+
(
1− c

1− vF
− F (vF−)

)
· vF −

∫ 1

vF

x dF (x)

= 0,

where the last line uses the definition of the reservation value.

Since ∫ 1

vF

(x− vF ) dF̂ (x)− c =
c

1− ε− vF
· (1−

√
ε− vF )− c < 0

and∫ 1

vF+ε−
√
ε

(
x− (vF + ε−

√
ε)
)

dF̂ (x)− c =

∫ vF

vF+ε−
√
ε

(
x− (vF + ε−

√
ε)
)

dF̂ (x) > 0,

we have vF + ε −
√
ε < vF̂ < vF . Thus, as ε → 0, vF̂ → vF and F (vF̂ ) → F (vF−).

Furthermore, 0 < ε′ < vF̂ < vF < 1−
√
ε < 1 for ε > 0 sufficiently small.

The difference of sender 1’s expected payoff under F̂ and F is at least

χ · F n−1(ε′)− F (0) · 1

n
F n−1(0)

+

∫ vF−

vF̂

1

n
F n−1(x) dF̂ (x)−

∫ vF−

vF̂

F n−1(x) dF (x)

+
(
1− F̂ (vF−)

) 1

n

n−1∑
k=0

F k(vF̂ )−
(
1− F (vF−)

) 1

n

n−1∑
k=0

F k(vF−),

since

(1) in the first term of the second line, for the calculation of sender 1’s payoff at any

posterior q1 ∈ [vF̂ , vF−), we only include the scenario in which the receiver visits

sender 1 first (which happens with probability 1
n
) and all senders other than sender

1 have posteriors less than q1, and
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(2) in the first term of the third line, for the calculation of sender 1’s payoff at any

posterior q1 ∈ [vF , 1], we only include the scenarios in which all senders other than

sender 1 have posteriors less than vF̂ .

This lower bound converges to n−1
n
F n(0) > 0 as ε → 0. Thus, sender 1 has a profitable

deviation.

Step 4. F n−1 is linear on [0, xF ] for some 0 < xF < vF and flat on [xF , vF ).

Since F (0) = 0 and F has no jumps on (0, vF ), the payoff of sender 1 at any posterior

q1 ∈ [0, vF ) is F n−1(q1). Thus, F n−1 has to be linear on [0, xF ) for some 0 < xF ≤ vF

and flat on [xF , vF ). Otherwise, sender 1 could do a mean-preserving spread or a mean-

preserving contraction on [0, vF ) without changing the reservation value to obtain a

higher payoff. Next, we show that xF < vF . Since sender 1’s payoff at the posterior vF

is 1
n

∑n−1
k=0 F

k(vF−) > F n−1(vF−), the payoff of sender 1 has a jump at the posterior vF .

Thus, if F n−1 is linear on [0, vF ), sender 1 could do a mean-preserving spread on [0, vF ]

without changing the reservation value to obtain a higher payoff.

Step 5. Sender 1 has a profitable deviation.

Let q denote the slope of F n−1 on [0, xF ], and let q̂ = q
1

n−1 . Consider the following

strategy F ′ (see Figure 5):

F ′(x) =



0, if x ∈ [0, y);

q̂(x− y)
1

n−1 , if x ∈ [y, xF );

q̂(xF − y)
1

n−1 , if x ∈ [xF , vF );

q̂(xF − y)
1

n−1 + κ, if x ∈ [vF , 1);

1, if x = 1,

where y > 0 is sufficiently small, and

κ =
q̂
n
(xF − y)

n
n−1 + q̂y(xF − y)

1
n−1 + 1− q̂(xF − y)

1
n−1 − p

1− vF

such that the mean of F ′ is p.
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F n−1(x)

(F ′)n−1(x)

Figure 5: F n−1 and (F ′)n−1 in Step 5 of the proof (for illustration purposes only).

We claim that

vF ′ =
p− c− q̂

n
(xF − y)

n
n−1 − q̂y(xF − y)

1
n−1

1− q̂(xF − y)
1

n−1

for y > 0 sufficiently small. This is because (1) vF ′ < vF and vF ′ → vF as y → 0,14 and

(2) vF ′ satisfies that

κ · (vF − vF ′) +
(
1− q̂(xF − y)

1
n−1 − κ

)
· (1− vF ′) = c.

Pick y sufficiently small such that 0 < y < xF < vF ′ < vF . Thus, both F and F ′

have zero measure on [vF ′ , vF ), and sender 1’s expected payoff by using F ′ when all the

14To see this, note that

vF ′ =
p− c− q̂

n (xF − y)
n

n−1 − q̂y(xF − y)
1

n−1

1− q̂(xF − y)
1

n−1

<
p− c− q̂

nx
n

n−1

F

1− q̂x
1

n−1

F

= vF

for y > 0 sufficiently small, where the inequality is because the derivative of vF ′ (viewed as a function
of y) is negative at y = 0, and the last equality follows from∫ 1

0

xdF (x) =

∫ xF

0

xdF (x) +

∫ 1

vF

xdF (x) =
q̂

n
x

n
n−1

F + vF · (1− q̂x
1

n−1

F ) + c = p

(recall that Fn−1 is linear on [0, xF ] with slope q and flat on [xF , vF )).
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other senders use F is

∫ xF

y

F n−1(x) dF ′(x) +
(
1− F ′(vF−)

) [ 1

n

n−1∑
k=0

F k(vF ′)

]

=
1

n
q̂n(xF − y)

n
n−1 + q̂ny(xF − y)

1
n−1 + (1− q̂(xF − y)

1
n−1 )

[
1

n

n−1∑
k=0

q̂kx
k

n−1

F

]

=
1

n
+
n− 1

n
q̂ny(xF − y)

1
n−1 +

1

n
q̂(x

1
n−1

F − (xF − y)
1

n−1 )
n−2∑
k=0

q̂kx
k

n−1

F

>
1

n
.

Thus, sender 1 has a profitable deviation. This completes the analysis of Case I.

Case II: vF = p− c. We now consider the case in which vF = p− c.

Step 6. If (F, F, . . . , F ) is a symmetric equilibrium, then

1 +
n−1∑
k=1

Π1≤j≤kF (ψn−j+1(x)) ≤ x

p− c

for all x ∈ [p− c, 1− c
p
).

Suppose to the contrary, there is some x∗ ∈ [p− c, 1− c
p
) such that

1 +
n−1∑
k=1

Π1≤j≤kF (ψn−j+1(x
∗)) >

x∗

p− c
.

Since F is right continuous, there exists some y ∈ [x∗, 1 − c
p
) such that F is continuous

at {ψ2(y), ψ3(y), . . . , ψn(y)} and

1 +
n−1∑
k=1

Π1≤j≤kF (ψn−j+1(y)) >
y

p− c
.
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Let

Fy(x) =


1− c

1−y −
1
y
(p− c

1−y ) if x ∈ [0, y);

1− c
1−y if x ∈ [y, 1);

1 if x = 1.

Clearly, Fy ∈ F and vFy = y. Sender 1’s payoff by using the strategy Fy when the other

senders use the strategy F is15

[
c

1− y
+

1

y
(p− c

1− y
)

][
1

n
+

1

n

n−1∑
k=1

Π1≤j≤kF (ψn−j+1(y))

]
>

[
p

y
− c

y

]
y

n(p− c)
=

1

n
.

Thus, sender 1 has a profitable deviation. We have a contradiction.

Step 7. If

1 +
n−1∑
k=1

F k(x) ≤ x

p− c

for all x ∈ [p− c, 1− c
p
), then (F, F, . . . , F ) is a symmetric equilibrium.

We show that none of the senders has a profitable deviation. By symmetry, we only

show this for sender 1. Since vF = p − c, we have F (vF−) = 0. If sender 1 deviates to

some F ′ with vF ′ ∈ [p− c, 1− c
p
), then his payoff is at most

∫ vF ′−

vF

1

n

n−1∑
k=0

F k(x) dF ′(x) +

∫ 1

vF ′

1

n

n−1∑
k=0

F k(vF ′) dF ′(x)

≤
∫ vF ′−

vF

x

n(p− c)
dF ′(x) +

∫ 1

vF ′

vF ′

n(p− c)
dF ′(x)

≤ 1

n(p− c)

[
p−

∫ 1

vF ′

x dF ′(x) +

∫ 1

vF ′

vF ′ dF
′(x)

]
=

1

n
,

since for both terms in the first line we relax the calculations in two aspects: (a) the

15There are n cases in which the receiver visits sender 1. In the k-th case (1 ≤ k ≤ n), the receiver visits
k−1 other senders before visiting sender 1. The probability of the first case is 1

n . The probability of the
(k+ 1)-th case taking into account the optimal search behavior of the receiver is 1

nΠ1≤j≤kF (ψn−j+1(y))
(see Appendix A).
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receiver always continues searching if sender 1 has not been visited and the maximum

sampled reward so far is weakly less than vF ′ ; (b) the receiver always invests in sender

1’s project whenever there is a tie. If sender 1 deviates to F ′′ with vF ′′ = 1− c
p

(that is,

F ′′ = FF ), then sender 1’s payoff is at most

p

[
1

n

n−1∑
k=0

F k(vF ′′)

]
≤ p

vF ′′

n(p− c)
=

1

n
.

Thus, sender 1 does not have a profitable deviation.

C Further discussions on equilibrium existence

Suppose that there are n senders. We study whether there is a feasible F that satisfy

the sufficient condition for (F, F, . . . , F ) to be a Nash equilibrium. That is, we ask if

there is a feasible F such that

1 +
n−1∑
k=1

F k(x) ≤ x

p− c

for all x ∈ [p− c, 1− c
p
). We note that any such F satisfies that vF = p− c, since F puts

no measure on [0, p− c).

Let

x̃ = min{n · (p− c), 1− c

p
}.

Fix some x ∈ [p− c, x̃). Clearly, 1 ≤ x
p−c < n. Consider

1 +
n−1∑
k=1

yk =
x

p− c
.

Note that the left hand side is strictly increasing in y for y ∈ [0, 1], is 1 when y = 0

and n when y = 1. Thus, there is a unique solution within [0, 1] such that the equation

holds. Let yn(x) denote this unique solution.

It is clear that yn(x) is increasing in x, and decreasing in n. In general, it would be
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tedious to specify the solution yn(x), if possible at all. We extend the definition of yn(x)

by letting it be 0 for x ∈ [0, p− c), and 1 for x ∈ [x̃, 1]. Then yn(x) is a distribution. If

∫ 1

p−c
x dyn(x) ≤ p,

then a feasible F with the mean p exists, which satisfies the condition that for any

x ∈ [p− c, 1− c
p
),

1 +
n−1∑
k=1

F k(x) ≤ x

p− c
.

We further note that when n is large, x̃ = 1− c
p
. As yn(x) is decreasing in n, for any

x ∈ [p− c, 1− c
p
), yn(x)→ 0 as n→∞. That is, yn(x) will put more probability above

1− c
p
, implying that it is more difficult to satisfy the mean constraint.

D Proof of Theorem 2

Clearly, in any symmetric equilibrium, all senders get the same expected payoff of 1
n
.

We show that there is no symmetric equilibrium in the case in which p−c < vF ≤ vG.

Suppose to the contrary, there exists such a symmetric equilibrium (F, F, . . . , F ). Step

1 - Step 4 below establish properties that F necessarily satisfies. Step 5 then shows

that sender 1 has a profitable deviation, which contradicts that (F, F, . . . , F ) is a Nash

equilibrium.

Step 1. Since vF > p− c, we have F (vF−) 6= 0.

Step 2. Since H is atomless and F is an MPC of H, we have F (0) = 0.

Step 3. F has no jumps on (0, vF ).

Suppose that F has a jump at some z ∈ (0, vF ). We show that sender 1 has a

profitable deviation, which contradicts that (F, F, . . . , F ) is a Nash equilibrium. Let

F = E1 + E2, where

1. E1 is the restriction of F on [0, z)∪ (z, 1] (that is, E1 is a finite measure with total

measure 1− F ({z}) such that E1(A) = F (A) for any A ⊆ [0, z) ∪ (z, 1]), and
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2. E2 is the restriction of F on {z}.

Since F is an MPC of H, H can be decomposed as H = H1 + H2 such that Ej is an

MPC of Hj for j = 1, 2. Note that∫
[0,1]

x dH2(x) =

∫
[0,1]

x dE2(x) = z · F ({z}), and H2([0, 1]) = E2([0, 1]) = F ({z}).

Since E2 is an MPC of H2 and H2 is atomless (since H is atomless), H2([0, z)) > 0.

For any 0 < ε < H2([0, z)), let xε := sup{x : H2([0, xε]) ≤ ε}. Let Eε
2 be such that

1. Eε
2(A) = H2(A) for any A ⊆ [0, xε], and

2. On the interval (xε, 1], Eε
2 concentrates on the point zε = 1

H2((xε,1])

∫
(xε,1]

x dH2(x)

with measure H2((xε, 1]).

By construction, zε > z. Furthermore, as ε→ 0,

H2((ε, 1])→ H2([0, 1]) = F ({z}), zε → z, and zε < vF .

Define a probability measure F ε := E1 + Eε
2. By construction, F ε is an MPC of H

and has the same reservation value as F . Sender 1’s expected payoff from F ε while all

the other senders use F converges to ṽ as ε → 0, where ṽ is sender 1’s expected payoff

in the following hypothetical scenario:

• All senders choose the same strategy F . The receiver adopts a tie-breaking rule

that treats all senders identically except when the posterior for sender 1 is z, in

which case the receiver always chooses sender 1 when resolving the tie.

Since F ({z}) > 0, we have ṽ > 1
n
. Thus, sender 1 has a profitable deviation.

Step 4. F n−1 is flat on [xF , vF ) for some 0 < xF < vF .

Suppose to the contrary, F n−1 is not flat on [x, vF ) for any x < vF . For some z < vF

that is sufficiently close to vF , let yz be such that∫ yz

z

x dF (x) = vF · F ([z, yz]).

Clearly, yz > vF . Consider an MPC of F , denoted Fz, as follows.
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1. Fz and F coincide on [0, z) ∪ (yz, 1], and

2. Fz concentrates at vF with the finite measure F ([z, yz]).

Since Fz is an MPC of F , vFz ≤ vF . We claim that vFz > z. If vFz ≤ z, then∫
[vF ,1]

(x− vF ) dF (x) = c =

∫
[vFz ,1]

(x− vFz) dFz(x) ≥
∫
[z,1]

(x− vFz) dFz(x)

=

∫
[z,vF )

x dF (x) +

∫
[vF ,1]

x dF (x)− vFz · Fz([z, 1])

> vFz · F ([z, vF )) +

∫
[vF ,1]

x dF (x)− vFz · Fz([z, 1])

>

∫
[vF ,1]

x dF (x)− vFz · F ([vF , 1]),

implying that vFz > vF , which contradicts with vFz ≤ vF . Thus, vFz > z.

By adopting Fz when all the other senders choose F , sender 1’s expected payoff is at

least

∫
[0,z)

F n−1(x) dF (x) + (1− F ([0, z))

[
1

n

n−1∑
k=0

F k(vFz)

]

>

∫
[0,z)

F n−1(x) dF (x) + (1− F ([0, z))

[
1

n

n−1∑
k=0

F k(z)

]

=
1

n
F n(z) + (1− F ([0, z))

1

n

1− F n(z)

1− F (z)

=
1

n
.

Thus, sender 1 has a profitable deviation, which contradicts that (F, F, . . . , F ) is a

Nash equilibrium.

Step 5. Sender 1 has a profitable deviation.

31



Consider an MPC of F , denoted F ′, as follows.

F ′(x) =



0, if x ∈ [0, y);

F (x)− F (y), if x ∈ [y, vF );

F (v), if x ∈ [vF , v);

F (x), if x ∈ [v, 1];

where F (y) > 0 is sufficiently small and v̄ is such that

vF · (F (v)− (F (vF )− F (y))) =

∫
[0,y)

x dF (x) +

∫
[vF ,v)

x dF (x).

Since F ′ is an MPC of F , we have vF ′ < vF . Furthermore, vF ′ → vF as y → 0. Thus,

for sufficiently small y > 0, vF ′ > xF , and F has no measure on the interval [vF ′ , vF ).

Sender 1’s expected payoff by using F ′ when all the other senders use F is

∫ vF ′

y

F n−1(x) dF ′(x) +
(
1− F ′(vF−)

) [ 1

n

n−1∑
k=0

F k(vF−)

]

=

∫ vF ′

y

F n−1(x) dF (x) +
(
1− F (vF−) + F (y)

) [ 1

n

n−1∑
k=0

F k(vF−)

]

=

∫ vF−

0

F n−1(x) dF (x)−
∫ y

0

F n−1(x) dF (x) +
(
1− F (vF−) + F (y)

) [ 1

n

n−1∑
k=0

F k(vF−)

]

=
1

n
+ F (y)

[
1

n

n−1∑
k=0

F k(vF−)

]
−
∫ y

0

F n−1(x) dF (x)

>
1

n
.

This completes the proof of Theorem 2.
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E Proof of Theorem 3

We classify our analysis into three cases. We first show that there is no Nash equilibrium

when vF1 < vF2 (Case I) or when vF1 = vF2 (Case II). We then consider Case III in

which vF1 > vF2 .

Case I. Suppose that there exists a Nash equilibrium (F1, F2) such that vF1 < vF2 .

Step 1. F1((x, vF2)) > 0 for any x ∈ (vF1 , vF2).

Suppose to the contrary, there exists some z ∈ (vF1 , vF2) such that F1(z, vF2) = 0. We

claim that sender 2 has a profitable deviation. Indeed, we construct the strategy F ′2 by

performing a MPC of F2 that shifts a sufficiently small probability on [0, vF1) and (vF2 , 1]

to the point {vF2}. Clearly, z < vF ′2 < vF2 , and sender 2 obtains a higher expected payoff

by using F ′2.
16

Step 2. F1 has no jump on (vF1 , vF2).

Suppose to the contrary, F1({z}) > 0 for some z ∈ (vF1 , vF2).

1. It must be that F2({z}) = 0, as otherwise sender 2 could benefit by performing a

mean-preserving spread at the posterior z.

2. Furthermore, if F2((a, b)) = 0 for some open neighborhood (a, b) of z, then sender 1

would like to split the mass at z to {a+z
2
} and {vF2} so that he could obtain a higher

payoff. Thus, F2((a, b)) > 0 for arbitrarily small open neighborhood (a, b) of z.

3. But then sender 2 could obtain a higher payoff by choosing a mean-preserving

contraction on (a, b) so that the concentration point is z + ε.

Step 3. F2 has no jump on (vF1 , vF2).

Suppose to the contrary, F2({z}) > 0 for some z ∈ (vF1 , vF2).

1. It must be that F1({z}) = 0, as otherwise sender 1 could benefit by performing a

mean-preserving spread at the posterior z.
16Note that

vF2
> vF1

≥ p1 − c > p2 − c =⇒ F2([0, vF1
)) > 0 and F2((vF2

, 1]) > 0.
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2. Furthermore, if F1((a, b)) = 0 for some open neighborhood (a, b) of z, then sender 2

would like to split the mass at z to {a+z
2
} and {vF2} so that he could obtain a higher

payoff. Note that sender 2’s payoffs at z and a+z
2

are the same, while the payoff at

vF2 is higher than the payoff at z since F1(a, vF2) > 0 for any a ∈ (vF1 , vF2). Thus,

F1((a, b)) > 0 for arbitrarily small open neighborhood (a, b) of z.

3. But then sender 1 could obtain a higher payoff by choosing a mean-preserving

contraction on (a, b) so that the concentration point is z + ε.

Step 4. On (vF1 , vF2), F1 and F2 have the same support.

If there exists (a, b)∩supp(F2) = ∅ but F1(a, b) > 0, then sender 1 can strictly benefit

by a mean-preserving spread, which puts all the measure on (a, b) on the two points a

and vF2 .

If there exists (a, b)∩supp(F1) = ∅ but F2(a, b) > 0, then sender 2 can strictly benefit

by a mean-preserving spread, which puts all the measure on (a, b) on the two points a

and vF2 .

Step 5. On (vF1 , vF2), both F1 and F2 are linear.

If not, some sender could do a mean-preserving spread or a mean-preserving

contraction to obtain a higher payoff.

Step 6. Sender 1 has a profitable deviation.

Suppose that F1(x) = a1x+ b1 and F2(x) = a2x+ b2 for x ∈ (vF1 , vF2). For sender 1,

we consider a mean-preserving spread on (vF2 − ε, vF2) by concentrating the measure on

vF2 − ε and vF2 .

The expected payoff of sender 1 based on this part of measure before the spread is∫ vF2

vF2−ε

(
1

2
F2(x) +

1

2
F2(vF1−)

)
dF1(x)

=
1

2
F1(vF2 − ε, vF2) ·

[(
1

2
F2(vF2 − ε) +

1

2
F2(vF1−)

)
+

(
1

2
F2(vF2−) +

1

2
F2(vF1−)

)]
.
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The expected payoff of sender 1 based on this part of measure after the spread is

1

2
F1(vF2 − ε, vF2) ·

[(
1

2
F2(vF2 − ε) +

1

2
F2(vF1−)

)
+

(
1

2
+

1

2
F2(vF1−)

)]
>

1

2
F1(vF2 − ε, vF2) ·

[(
1

2
F2(vF2 − ε) +

1

2
F2(vF1−)

)
+

(
1

2
F2(vF2−) +

1

2
F2(vF1−)

)]
.

The payoff of sender 1 at any other posterior is unchanged. Thus, sender 1 has a

profitable deviation, which contradicts that (F1, F2) is a Nash equilibrium.

We conclude that there is no equilibrium such that vF1 < vF2 . This completes the

analysis of Case I.

Case II. Adopting similar arguments as in Case I, we can show that there is no

equilibrium such that vF1 = vF2 . We omit the details.

Case III. Lastly, we consider the case in which vF1 > vF2 .

Step 7. Either F2([vF2 , vF1)) = 0 or F2((vF1 , 1]) = 0.

Otherwise, Sender 2 could achieve a higher expected payoff by choosing a MPC that

shifts some measure from [vF2 , vF1) and (vF1 , 1] to vF1 without changing the reservation

value.

Step 8. F2([vF2 , vF1)) = 0.

It suffices to show that F2((vF1 , 1]) > 0. Suppose instead we have F2((vF1 , 1]) = 0.

1. There are two cases to consider. In the first case, suppose that F2((vF2 , vF1)) = 0.

In other words, on the interval [vF2 , 1], F2 concentrates on the two points vF2 and vF1

such that F2({vF1}) > 0. When vF1 < 1− c
p1

, sender 1 could do a mean-preserving

spread, which splits a sufficiently small measure on (vF1 , 1] to the two end points 0

and 1. The new reservation value is slightly higher than vF1 , and sender 1 obtains

a higher payoff, a contradiction. When vF1 = 1− c
p1

, then sender 1 can benefit by a

mean-preserving contraction, which moves a sufficiently small measure from 0 and

1 to vF1 , a contradiction.

2. In the second case, suppose that F2((vF2 , vF1)) > 0. If F1((vF2 , vF1)) = 0, then

sender 2 can benefit by splitting the measure on (vF2 + ε, vF1) into the two points
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vF2 + ε and vF1 for sufficiently small ε, a contradiction. Thus, F1((vF2 , vF1)) > 0.

Following the same arguments as in Case I, F1 and F2 are linear on (vF2 , vF1), and

then sender 2 has a profitable deviation, a contradiction.

Step 9. F1([0, vF2)) = 0.

Suppose to the contrary, F1([0, vF2)) > 0. Then sender 1 can benefit from a mean-

preserving contraction, which moves some measures on [0, vF2) and (vF1 , 1] to vF1 , a

contradiction.

Step 10. vF2 = p2 − c.

If vF2 > p2 − c, then F2([0, vF2)) > 0. Sender 2 can strictly benefit from a mean-

preserving contraction, which moves some measures on [0, vF2) and (vF1 , 1] to vF1 , a

contradiction.

From Step 9, we have that F1 places no probability on the interval [0, vF2). From Step

8 and Step 10, we have that vF2 = p2 − c, and F2 places no probability on the interval

[0, vF1). Thus, in any equilibrium (F1, F2), the receiver meets each sender i with equal

probability 1
2
, and invests in his project regardless of the posterior qi. The payoff of each

sender is 1
2
, and the receiver’s expected payoff is p1+p2

2
.

Step 11. If (F1, F2) is a Nash equilibrium, then 1+F2(x) ≤ x
p1−c for all x ∈ [p1−c, 1−

c
p1

), 2F1(x) ≤ x
p2−c for all x ∈ [p2− c, vF1), and 1 +F1(x) ≤ x

p2−c for all x ∈ [vF1 , 1− c
p2

).

Suppose that for some x∗ ∈ [p1 − c, 1 − c
p1

), we have 1 + F2(x
∗) > x∗

p1−c . Since F2 is

right continuous, there exists some y ∈ [x∗, 1 − c
p1

) such that F2 is continuous at y and

1 + F2(y) > y
p1−c . Let

F ′1(x) =


1− c

1−y −
1
y
(p1 − c

1−y ) if x ∈ [0, y);

1− c
1−y if x ∈ [y, 1);

1 if x = 1.

Clearly, the mean of F ′1 is p1 and vF ′1 = y. Sender 1’s payoff by using the strategy F ′1
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when sender 2 uses the strategy F2 is[
c

1− y
+

1

y
(p1 −

c

1− y
)

] [
1

2
+

1

2
F2(y)

]
>

[
p1
y
− c

y

]
y

2(p1 − c)
=

1

2
.

Thus, sender 1 has a profitable deviation, and (F1, F2) is not a Nash equilibrium. We

have a contradiction.

Suppose that for some x∗ ∈ [vF1 , 1 − c
p2

), we have 1 + F1(x
∗) > x∗

p2−c . Since F1 is

right continuous, there exists some y ∈ [x∗, 1 − c
p2

) such that F1 is continuous at y and

1 + F1(y) > y
p2−c . Let

F ′2(x) =


1− c

1−y −
1
y
(p2 − c

1−y ) if x ∈ [0, y);

1− c
1−y if x ∈ [y, 1);

1 if x = 1.

Sender 2’s payoff by using the strategy F ′2 when sender 1 uses the strategy F1 is

[
c

1− y
+

1

y
(p2 −

c

1− y
)

] [
1

2
+

1

2
F1(y)

]
>

[
p2
y
− c

y

]
y

2(p2 − c)
=

1

2
.

Thus, sender 2 has a profitable deviation, and (F1, F2) is not a Nash equilibrium. We

have a contradiction.

Suppose that for some x∗ ∈ [p2 − c, vF1), we have 2F1(x
∗) > x∗

p2−c . Since F1 is

right continuous, there exists some y ∈ [x∗, vF1) such that F1 is continuous at y and

2F1(y) > y
p2−c . Let

F ′′2 (x) =


1− c

1−y −
1
y
(p2 − c

1−y ) if x ∈ [0, y);

1− c
1−y if x ∈ [y, 1);

1 if x = 1.
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Sender 2’s payoff by using the strategy F ′′2 when sender 1 uses the strategy F1 is

c

1− y

[
1

2
+

1

2
F1(y)

]
+

1

y
(p2 −

c

1− y
)F1(y)

≥
[

c

1− y
+

1

y
(p2 −

c

1− y
)

]
F1(y)

>

[
p2
y
− c

y

]
y

2(p2 − c)

=
1

2
.

Thus, sender 2 has a profitable deviation, and (F1, F2) is not a Nash equilibrium. We

have a contradiction.

Step 12. If 1 + F2(x) ≤ x
p1−c for all x ∈ [p1 − c, 1− c

p1
) and 1 + F1(x) ≤ x

p2−c for all

x ∈ [p2 − c, 1− c
p2

), then (F1, F2) is a Nash equilibrium.

We show that neither sender has a profitable deviation. First consider sender 1. If

sender 1 deviates to some F ′1 with vF ′1 ∈ [p1 − c, 1− c
p1

), then his payoff is

∫ vF ′1
−

vF2

[
1

2
+

1

2

[
F2(x−) +

1

2
F2({x})

]]
dF ′1(x) +

∫ 1

vF ′1

[
1

2
+

1

2
F2(vF ′1−)

]
dF ′1(x)

≤
∫ vF ′1

−

vF2

x

2(p1 − c)
dF ′1(x) +

∫ 1

vF ′1

vF ′1
2(p1 − c)

dF ′1(x)

≤ 1

2(p1 − c)

[
p1 −

∫ 1

vF ′1

x dF ′1(x) +

∫ 1

vF ′1

vF ′1 dF ′1(x)

]

=
1

2
,

where the last line uses the definition of the reservation value. If sender 1 deviates to F ′1

with vF ′1 = 1− c
p1

, then his payoff is

p1

[
1

2
+

1

2
F2(vF ′1−)

]
≤ p1

vF ′1
2(p1 − c)

=
1

2
.

Thus, sender 1 does not have a profitable deviation.

Next, we consider sender 2. If sender 2 deviates to some F ′2 with vF ′2 ∈ [p2 − c, vF1),
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then his payoff is

∫ vF ′2
−

vF2

[
F1(x−) +

1

2
F1({x})

]
dF ′2(x) +

∫ vF1−

vF ′2

[
1

2

[
F1(x−) +

1

2
F1({x})

]
+

1

2
F1(vF ′2−)

]
dF ′2(x)

+

∫ 1

vF1

[
1

2
+

1

2
F1(vF ′2−)

]
dF ′2(x)

≤
∫ vF ′2

−

vF2

x

2(p2 − c)
dF ′2(x) +

∫ vF1−

vF ′2

x

2(p2 − c)
dF ′2(x) +

∫ 1

vF1

vF ′2
2(p2 − c)

dF ′2(x)

≤ 1

2(p1 − c)

[
p2 −

∫ 1

vF1

x dF ′2(x) +

∫ 1

vF1

vF ′2 dF ′2(x)

]
=

1

2
,

where the last line uses the definition of the reservation value. If sender 2 deviates to

some F ′2 with vF ′2 ∈ [vF1 , 1− c
p2

), then his payoff is

∫ vF1−

vF2

[
F1(x−) +

1

2
F1({x})

]
dF ′2(x) +

∫ 1

vF1

[
1

2
+

1

2
F1(vF ′2−)

]
dF ′2(x)

≤
∫ vF1−

vF2

x

2(p1 − c)
dF ′2(x) +

∫ 1

vF1

vF ′2
2(p1 − c)

dF ′2(x)

≤ 1

2(p1 − c)

[
p1 −

∫ 1

vF1

x dF ′2(x) +

∫ 1

vF1

vF ′2 dF ′2(x)

]
=

1

2
.

If sender 2 deviates to F ′2 with vF ′2 = 1− c
p2

, then his payoff is

p2

[
1

2
+

1

2
F1(vF ′2−)

]
≤ p2

vF ′2
2(p2 − c)

=
1

2
.

Thus, sender 2 does not have a profitable deviation.

This completes the proof of Theorem 3.
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